skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Duarte, Jose M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Protein Data Bank (PDB) archives 3D structures of macromolecules determined experimentally using various methods. It is jointly managed by the Worldwide Protein Data Bank (wwPDB) consortium. Research Collaboratory for Structural Bioinformatics (RCSB) PDB, the US data center for the PDB, provides streamlined access to >240 000 structures through a variety of research-focused tools on RCSB.org. In addition, RCSB.org makes available over 1 million computed structure models (CSMs) predicted using deep learning methods and archived in the AlphaFold Database and ModelArchive. The PDB-IHM system was developed as a wwPDB project based on community recommendations to archive structures determined using integrative/hybrid methods (IHM). These structures are computed by combining information from multiple experimental and computational techniques to overcome the limitations of traditional single methods (e.g. macromolecular crystallography, 3D electron microscopy, nuclear magnetic resonance spectroscopy). In 2024, PDB-IHM was unified with the PDB to archive integrative structures alongside single-method experimental structures. These integrative structures have been made accessible via the RCSB.org website, facilitating efficient delivery of IHM data to a broad community of PDB users. Herein, we describe the expanded capabilities of RCSB.org that support discovery, analysis, and visualization of integrative structures together with single-method experimental structures and CSMs. 
    more » « less
  2. Elofsson, Arne (Ed.)
    Motivation: Tools for pairwise alignments between 3D structures of proteins are of fundamental importance for structural biology and bioinformatics, enabling visual exploration of evolutionary and functional relationships. However, the absence of a user-friendly, browser-based tool for creating alignments and visualizing them at both 1D sequence and 3D structural levels makes this process unnecessarily cumbersome. Results: We introduce a novel pairwise structure alignment tool (rcsb.org/alignment) that seamlessly integrates into the RCSB Protein Data Bank (RCSB PDB) research-focused RCSB.org web portal. Our tool and its underlying application programming interface (alignment.rcsb.org) empowers users to align several protein chains with a reference structure by providing access to established alignment algorithms (FATCAT, CE, TM-align, or Smith–Waterman 3D). The user-friendly interface simplifies parameter setup and input selection. Within seconds, our tool enables visualization of results in both sequence (1D) and structural (3D) perspectives through the RCSB PDB RCSB.org Sequence Annotations viewer and Mol* 3D viewer, respectively. Users can effortlessly compare structures deposited in the PDB archive alongside more than a million incorporated Computed Structure Models coming from the ModelArchive and AlphaFold DB. Moreover, this tool can be used to align custom structure data by providing a link/URL or uploading atomic coordinate files directly. Importantly, alignment results can be bookmarked and shared with collaborators. By bridging the gap between 1D sequence and 3D structures of proteins, our tool facilitates deeper understanding of complex evolutionary relationships among proteins through comprehensive sequence and structural analyses. Availability and implementation: The alignment tool is part of the RCSB PDB research-focused RCSB.org web portal and available at rcsb.org/alignment. Programmatic access is available via alignment.rcsb.org. Frontend code has been published at github.com/rcsb/rcsb-pecos-app. Visualization is powered by the open-source Mol* viewer (github.com/molstar/molstar and github.com/molstar/rcsb-molstar) plus the Sequence Annotations in 3D Viewer (github.com/rcsb/rcsb-saguaro-3d). 
    more » « less
  3. Gromiha, Michael (Ed.)
    Abstract MotivationVolumetric 3D object analyses are being applied in research fields such as structural bioinformatics, biophysics, and structural biology, with potential integration of artificial intelligence/machine learning (AI/ML) techniques. One such method, 3D Zernike moments, has proven valuable in analyzing protein structures (e.g., protein fold classification, protein–protein interaction analysis, and molecular dynamics simulations). Their compactness and efficiency make them amenable to large-scale analyses. Established methods for deriving 3D Zernike moments, however, can be inefficient, particularly when higher order terms are required, hindering broader applications. As the volume of experimental and computationally-predicted protein structure information continues to increase, structural biology has become a “big data” science requiring more efficient analysis tools. ResultsThis application note presents a Python-based software package, ZMPY3D, to accelerate computation of 3D Zernike moments by vectorizing the mathematical formulae and using graphical processing units (GPUs). The package offers popular GPU-supported libraries such as CuPy and TensorFlow together with NumPy implementations, aiming to improve computational efficiency, adaptability, and flexibility in future algorithm development. The ZMPY3D package can be installed via PyPI, and the source code is available from GitHub. Volumetric-based protein 3D structural similarity scores and transform matrix of superposition functionalities have both been implemented, creating a powerful computational tool that will allow the research community to amalgamate 3D Zernike moments with existing AI/ML tools, to advance research and education in protein structure bioinformatics. Availability and implementationZMPY3D, implemented in Python, is available on GitHub (https://github.com/tawssie/ZMPY3D) and PyPI, released under the GPL License. 
    more » « less
  4. The symmetry of biological molecules has fascinated structural biologists ever since the structure of hemoglobin was determined. The Protein Data Bank (PDB) archive is the central global archive of three-dimensional (3D), atomic-level structures of biomolecules, providing open access to the results of structural biology research with no limitations on usage. Roughly 40% of the structures in the archive exhibit some type of symmetry, including formal global symmetry, local symmetry, or pseudosymmetry. The Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (founding member of the Worldwide Protein Data Bank partnership that jointly manages, curates, and disseminates the archive) provides a variety of tools to assist users interested in exploring the symmetry of biological macromolecules. These tools include multiple modalities for searching and browsing the archive, turnkey methods for biomolecular visualization, documentation, and outreach materials for exploring functional biomolecular symmetry. 
    more » « less
  5. Cowen, Lenore (Ed.)
    Abstract Motivation Mapping positional features from one-dimensional (1D) sequences onto three-dimensional (3D) structures of biological macromolecules is a powerful tool to show geometric patterns of biochemical annotations and provide a better understanding of the mechanisms underpinning protein and nucleic acid function at the atomic level. Results We present a new library designed to display fully customizable interactive views between 1D positional features of protein and/or nucleic acid sequences and their 3D structures as isolated chains or components of macromolecular assemblies. Availability and implementation https://github.com/rcsb/rcsb-saguaro-3d. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  6. Abstract The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, RCSB.org), the US Worldwide Protein Data Bank (wwPDB, wwPDB.org) data center for the global PDB archive, provides access to the PDB data via its RCSB.org research-focused web portal. We report substantial additions to the tools and visualization features available at RCSB.org, which now delivers more than 227000 experimentally determined atomic-level three-dimensional (3D) biostructures stored in the global PDB archive alongside more than 1 million Computed Structure Models (CSMs) of proteins (including models for human, model organisms, select human pathogens, crop plants and organisms important for addressing climate change). In addition to providing support for 3D structure motif searches with user-provided coordinates, new features highlighted herein include query results organized by redundancy-reduced Groups and summary pages that facilitate exploration of groups of similar proteins. Newly released programmatic tools are also described, as are enhanced training opportunities. 
    more » « less
  7. Valencia, Alfonso (Ed.)
    Abstract Motivation Membrane proteins are encoded by approximately one fifth of human genes but account for more than half of all US FDA approved drug targets. Thanks to new technological advances, the number of membrane proteins archived in the PDB is growing rapidly. However, automatic identification of membrane proteins or inference of membrane location is not a trivial task. Results We present recent improvements to the RCSB Protein Data Bank web portal (RCSB PDB, rcsb.org) that provide a wealth of new membrane protein annotations integrated from four external resources: OPM, PDBTM, MemProtMD and mpstruc. We have substantially enhanced the presentation of data on membrane proteins. The number of membrane proteins with annotations available on rcsb.org was increased by ∼80%. Users can search for these annotations, explore corresponding tree hierarchies, display membrane segments at the 1D amino acid sequence level, and visualize the predicted location of the membrane layer in 3D. Availability and implementation Annotations, search, tree data and visualization are available at our rcsb.org web portal. Membrane visualization is supported by the open-source Mol* viewer (molstar.org and github.com/molstar/molstar). Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  8. Deane, Charlotte M (Ed.)